MoS2 - Synthetic Crystal

SKU:
BLK-MoS2-SYN
Condition:
New
  • World record size MoS2 synthetic (CVT or Flux) grown crystals
  • World record size MoS2 synthetic (CVT or Flux) grown crystals
  • World record size MoS2 synthetic (CVT or Flux) grown crystals
  • World record size MoS2 synthetic (CVT or Flux) grown crystals
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
$510.00
Frequently bought together:

Description

We guarantee world's largest size commercial crystals with full refund and money back guarantee

We provide 2H-MoS2 synthetic crystals in undoped, p-type, and n-type forms. Our crystals are produced using two methods: Flux zone growth, which offers superior electronic and optical performance, and CVT growth, which provides lower performance but larger sizes (~1,5cm). In contrast, other commercially available 2H-MoS2 crystals are typically derived from natural MoS2 (lowest grade) or CVT growth, which often contains significant contamination from commonly used transport agents.

Our synthetic crystals are among the largest in the world, measuring approximately 1 cm or more. For those requiring 3R-MoS2 crystals for research, please contact us.

Advantages of our MoS2 crystals

  • We offer guaranteed largest size synthetic crystal in the world.
  • Only commercially available p-type and n-type MoS2 synthetic crystals
  • Confirmed p- and n-type response (excitonic and electronic)
  • Excellent customer support and return policy as per US regulations
  • 20 years of optimization and perfection in material quality
  • Ready to ship across the world.

The properties of MoS2 vdW layered crystals 

Sample size Larger than 1cm (largest size guaranteed)
Material properties  Bulk 1.2 eV indirect and Excitonic semiconductor (~1.85 eV)
Crystal structure  2H semiconducting phase
Degree of exfoliation  Easy to exfoliate
Production method  Flux zone (higher performance) or CVT (lower performance) 
Other characteristics
  • High single crystal domain size
  • Low defect concentration
  • High carrier mobility
  • Confirmed 300K and cryogenic excitonic response

 

Photoluminescence spectrum from monolayer MoS2 sheets exfoliated from synthetic MoS2 crystals

mos2-photoluminescence.png

Raman spectrum from synthetic MoS2 crystals

mos2-raman.png

XRD data collected from synthetic MoS2 crystals

mos2-xrd.png

Transmission electron microscopy data collected from monolayer MoS2 sheets exfoliated from synthetic MoS2 crystals

mos2-tem.jpg.png

Publications from this product

Summary: Publications from Cornell, Washington, MIT, Berkeley, Stanford, and Princeton teams at top journals like Nature, Nature Materials, Nature Communications, Nano Letters, and Advanced Materials

Negative Differential Photoconductance as a Signature of Nonradiative Energy Transfer in van der Waals Heterojunction
ACS Nano 2021, 15, 10, 16432–16441

Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
Nature Nanotechnology (2022)

Zefei Wu, Shuigang Xu, Huanhuan Lu, Armin Khamoshi, Gui-Bin Liu, Tianyi Han, Yingying Wu, Jiangxiazi Lin, Gen Long, Yuheng He, Yuan Cai, Yugui Yao, Fan Zhang, and Ning Wang. "Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides." Nature communications 7, 12955 (2016).

Zefei Wu, Benjamin T. Zhou, Xiangbin Cai, Patrick Cheung, Gui-Bin Liu, Meizhen Huang, Jiangxiazi Lin, Tianyi Han, Liheng An, Yuanwei Wang, Shuigang Xu, Gen Long, Chun Cheng, Kam Tuen Law, Fan Zhang and Ning Wang "Intrinsic valley Hall transport in atomically thin MoS2." Nature communications 10, 611 (2019).

C. Robert, "Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures" Phys. Rev. Materials 2, 011001(R) (2018)

Lu Hua Li et. al. Asymmetric electric field screening in van der Waals heterostructures; Nature Communications 9, 1271 (2018) doi:10.1038/s41467-018-03592-3

X. Wang et.al. "Substrate modified thermal stability of mono- and few-layer MoS2" Nanoscale, 2018, 10, 3540-3546

L. Zhang. et.al. "Photonic-crystal exciton-polaritons in monolayer semiconductors" Nature Communications volume 9, Article number: 713 (2018)

Weigao Xu et al., "Correlated fluorescence blinking in two-dimensional semiconductor heterostructures", Nature 541, 62-67 (2017), link to article:
http://www.nature.com/nature/journal/v541/n7635/full/nature20601.html 

Manish Chhowalla team "Phase-engineered low-resistance contacts for ultrathin MoS2 transistors" Nature Materials DOI: 10.1038/NMAT4080

X. Chen "Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures" Nature Communications 6, Article number: 6088 (2015) doi:10.1038/ncomms7088

Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Yilei Li, Alexey Chernikov, Xian Zhang, Albert Rigosi, Heather M. Hill, Arend M. van der Zande, Daniel A. Chenet, En-Min Shih, James Hone, and Tony F. HeinzPhys. Rev. B 90, 205422 (2014)

H. Wang et.al. "Ultrafast response of monolayer molybdenum disulfide photodetector" Nature Communications 6, Article number: 8831 (2015)

Y. Jin "A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2" Advanced Materials 27, 5534–5540 (2015)

Tongay et. al. "Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons" Scientific Reports 3, Article number: 2657 (2013)

X Li et al. "Determining layer number of twodimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates" Nanotechnology 27 (2016) 145704

Tongay et.al. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2; Nano Letters, 2012, 12 (11), pp 5576–5580

Manish Chhowalla, "Two-dimensional semiconductors for transistors" Nature Reviews Materials 1, Article number: 16052 (2016) doi:10.1038/natrevmats.2016.52

D. Wolverson et.al. "Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor" ACS Nano, 2014, 8 (11), pp 11154–11164

M. Yankowitz et. al. "Intrinsic Disorder in Graphene on Transition Metal Dichalcogenide Heterostructures" Nano Letters, 2015, 15 (3), pp 1925–1929

H. C. Diaz et.al. "Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability" 2D Materials, Volume 2, Number 4 (2015)

A. Gul et.al. "Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2" Materials Research Express, 5 (3), 036415 (2018)

C. Robert "Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures" Phys. Rev. Materials, 2, 011001 (R)

Katharina Greulich; "Charge Transfer from Organic Molecules to Molybdenum Disulfide: Influence of the Fluorination of Iron Phthalocyanine" J. Phys. Chem. C 2020, 124, 31, 16990–16999 (2020)

 

View AllClose

Additional Information

Elements:
Mo,S
Element:
Molybdenum
Element:
Sulfur
Formula:
MoS2
Material class:
MX2
Material class:
Dichalcogen
Properties:
Semiconductor
Properties:
Excitonic
Band gap range:
VIS
Growth method:
CVT
Doping:
Undoped
Doping:
p-Type
Doping:
n-Type
View AllClose