MoS2 - Synthetic Crystal

  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
  • MoS2 - Synthetic Crystal
Frequently bought together:


Single crystal highly oriented synthetic 2H-phase MoS2 crystals have been developed at our facilities in the USA starting from the powder making to crystallization. Our crystals are well-known for its low defect density, ultra-flat surfaces, and high crystallinity. Synthetic MoS2 samples have excellent layer by layer stacking with very small (0.3 degree) mosaic spread which enables you to exfoliate large monolayers with minimal amount of effort. Synthetic MoS2 is an indirect gap semiconductor (1.2 eV) but becomes highly luminescent in the monolayer from at 1.9 eV (quasi-particle / optical band gap). Synthetic MoS2 crystals are superior to natural MoS2 in in defects, electronic and optical performance, purity, and surface smoothness. Please also see our nature small, medium, and large MoS2 crystals.

The properties of MoS2 vdW layered crystals

<td~centimeter or larger in size 

Sample size
Material properties Bulk 1.2 eV indirect and Direct at 1.9 eV
Crystal structure 2H semiconducting phase
Degree of exfoliation easy to exfoliate
Production method Chemical vapor transport technique 
Other characteristics
  • High single crystal domain size
  • Low defect concentration
  • High carrier mobility


Photoluminescence spectrum from monolayer MoS2 sheets exfoliated from synthetic MoS2 crystals


Raman spectrum from synthetic MoS2 crystals


XRD data collected from synthetic MoS2 crystals


Transmission electron microscopy data collected from monolayer MoS2 sheets exfoliated from synthetic MoS2 crystals


Publications from this product

Summary: Publications from Cornell, Washington, MIT, Berkeley, Stanford, and Princeton teams at top journals like Nature, Nature Materials, Nature Communications, Nano Letters, and Advanced Materials

Negative Differential Photoconductance as a Signature of Nonradiative Energy Transfer in van der Waals Heterojunction
ACS Nano 2021, 15, 10, 16432–16441

Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
Nature Nanotechnology (2022)

Zefei Wu, Shuigang Xu, Huanhuan Lu, Armin Khamoshi, Gui-Bin Liu, Tianyi Han, Yingying Wu, Jiangxiazi Lin, Gen Long, Yuheng He, Yuan Cai, Yugui Yao, Fan Zhang, and Ning Wang. "Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides." Nature communications 7, 12955 (2016).

Zefei Wu, Benjamin T. Zhou, Xiangbin Cai, Patrick Cheung, Gui-Bin Liu, Meizhen Huang, Jiangxiazi Lin, Tianyi Han, Liheng An, Yuanwei Wang, Shuigang Xu, Gen Long, Chun Cheng, Kam Tuen Law, Fan Zhang and Ning Wang "Intrinsic valley Hall transport in atomically thin MoS2." Nature communications 10, 611 (2019).

C. Robert, "Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures" Phys. Rev. Materials 2, 011001(R) (2018)

Lu Hua Li et. al. Asymmetric electric field screening in van der Waals heterostructures; Nature Communications 9, 1271 (2018) doi:10.1038/s41467-018-03592-3

X. Wang "Substrate modified thermal stability of mono- and few-layer MoS2" Nanoscale, 2018, 10, 3540-3546

L. Zhang. "Photonic-crystal exciton-polaritons in monolayer semiconductors" Nature Communications volume 9, Article number: 713 (2018)

Weigao Xu et al., "Correlated fluorescence blinking in two-dimensional semiconductor heterostructures", Nature 541, 62-67 (2017), link to article: 

Manish Chhowalla team "Phase-engineered low-resistance contacts for ultrathin MoS2 transistors" Nature Materials DOI: 10.1038/NMAT4080

X. Chen "Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures" Nature Communications 6, Article number: 6088 (2015) doi:10.1038/ncomms7088

Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Yilei Li, Alexey Chernikov, Xian Zhang, Albert Rigosi, Heather M. Hill, Arend M. van der Zande, Daniel A. Chenet, En-Min Shih, James Hone, and Tony F. HeinzPhys. Rev. B 90, 205422 (2014)

H. Wang "Ultrafast response of monolayer molybdenum disulfide photodetector" Nature Communications 6, Article number: 8831 (2015)

Y. Jin "A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2" Advanced Materials 27, 5534–5540 (2015)

Tongay et. al. "Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons" Scientific Reports 3, Article number: 2657 (2013)

X Li et al. "Determining layer number of twodimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates" Nanotechnology 27 (2016) 145704

Tongay Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2; Nano Letters, 2012, 12 (11), pp 5576–5580

Manish Chhowalla, "Two-dimensional semiconductors for transistors" Nature Reviews Materials 1, Article number: 16052 (2016) doi:10.1038/natrevmats.2016.52

D. Wolverson "Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor" ACS Nano, 2014, 8 (11), pp 11154–11164

M. Yankowitz et. al. "Intrinsic Disorder in Graphene on Transition Metal Dichalcogenide Heterostructures" Nano Letters, 2015, 15 (3), pp 1925–1929

H. C. Diaz "Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability" 2D Materials, Volume 2, Number 4 (2015)

A. Gul "Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2" Materials Research Express, 5 (3), 036415 (2018)

C. Robert "Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures" Phys. Rev. Materials, 2, 011001 (R)

Katharina Greulich; "Charge Transfer from Organic Molecules to Molybdenum Disulfide: Influence of the Fluorination of Iron Phthalocyanine" J. Phys. Chem. C 2020, 124, 31, 16990–16999 (2020)


View AllClose

Additional Information

Material class:
Material class:
Band gap range:
Growth method:
View AllClose